от Добромир Глухаров » 23 Мар 2020, 19:48
Нека $\alpha;\ \beta;\ \gamma$ са централните ъгли срещу страните. $a^2=2R^2-2R^2cos\alpha;\ b^2=2R^2-2R^2cos\beta;\ c^2=2R^2-2R^2cos\gamma$.
$S=\frac{abc}{4R}=...=\frac{8R^3}{4R}sin\frac{\alpha}{2}sin\frac{\beta}{2}sin\frac{\gamma}{2}=2R^2sin\frac{\alpha}{2}sin\frac{\beta}{2}sin\frac{\gamma}{2}$
Остава да намерим максимума на произведението от синусите. $f(\alpha,\beta,\gamma)=sin\frac{\alpha}{2}sin\frac{\beta}{2}sin\frac{\gamma}{2}=sin\frac{\alpha}{2}sin\frac{\beta}{2}cos\frac{\alpha+\beta}{2}$
$\begin{array}{|l}\frac{\partial f}{\partial\alpha}=\frac{1}{2}cos\frac{\alpha}{2}sin\frac{\beta}{2}cos\frac{\alpha+\beta}{2}-\frac{1}{2}sin\frac{\alpha}{2}sin\frac{\beta}{2}sin\frac{\alpha+\beta}{2}=0\\\frac{\partial f}{\partial\beta}=\frac{1}{2}sin\frac{\alpha}{2}cos\frac{\beta}{2}cos\frac{\alpha+\beta}{2}-\frac{1}{2}sin\frac{\alpha}{2}sin\frac{\beta}{2}sin\frac{\alpha+\beta}{2}=0\end{array}$
$\begin{array}{|l}tg\frac{\alpha}{2}=cotg\frac{\alpha+\beta}{2}\\tg\frac{\beta}{2}=cotg\frac{\alpha+\beta}{2}\end{array}\Rightarrow\alpha=\beta$
$f=sin^2\frac{\alpha}{2}cos\alpha$
$f'=2sin\frac{\alpha}{2}\cdot\frac{1}{2}cos\frac{\alpha}{2}cos\alpha+sin^2\frac{\alpha}{2}(-sin\alpha)=0$
$cos\frac{\alpha}{2}cos\alpha=sin\frac{\alpha}{2}sin\alpha$
$tg\alpha=cotg\frac{\alpha}{2}$
$\alpha=60^\circ$