от Гост » 26 Юли 2024, 15:17
$\lim_{x\to1}\frac{(lnx)^2}{sin(x-lnx-1)}=\lim_{x\to1}\frac{2lnx\cdot\frac{1}{x}}{cos(x-lnx-1)(1-\frac{1}{x})}=\lim_{x\to1}\frac{2lnx}{cos0.(x-1)}=\lim_{x\to1}\frac{2\cdot\frac{1}{x}}{1}=2$
$lnx=u(x)\Rightarrow x=e^{u(x)};\ x\to1\Rightarrow u\to0$
$\lim_{x\to1}\frac{(lnx)^2}{sin(x-lnx-1)}=\lim_{u\to0}\frac{u^2}{sin(e^u-u-1)}=\lim_{u\to0}\frac{u^2}{sin(\frac{u^2}{2}+\frac{u^3}{6}+\cdots)}=\lim_{u\to0}\frac{u^2}{sin(\frac{u^2}{2}+o(u^2))}=\lim_{u\to0}\frac{u^2}{\frac{u^2}{2}+o(u^2)}=2$