от Гост » 29 Дек 2024, 15:53
Сферична смяна на координатите:
$x^2+y^2+z^2=\rho^2\leq4,\ \rho\geq0$ по дефиниция $\Rightarrow\rho\in[0;2]$
$\phi$ обикаля по екватора от $0$ до $2\pi$, $\theta$ минава от Северния до Южния полюс - от $0$ до $\pi$.
$\begin{array}{|l}0\leq\rho\leq2\\0\leq\phi\leq2\pi\\0\leq\theta\leq\pi\end{array}$, а сферичната смяна е $\begin{array}{|l}x=\rho cos\phi sin\theta\\y=\rho sin\phi sin\theta\\z=\rho cos\theta\end{array}$
$\iiint_{x^2+y^2+z^2\leq4}(x+y+z)dxdydz=\int_0^2\int_0^{2\pi}\int_0^{\pi}(\rho cos\phi sin\theta+\rho sin\phi sin\theta+\rho cos\theta)\cdot\left|\frac{D(x,y,z)}{D(\rho,\phi,\theta)}\right|d\theta d\phi d\rho$
$\frac{D(x,y,z)}{D(\rho,\phi,\theta)}$ се нарича Якобиан на смяната и $\frac{D(x,y,z)}{D(\rho,\phi,\theta)}=\begin{array}{|ccc|}\frac{\partial x}{\partial\rho}&\frac{\partial x}{\partial\phi}&\frac{\partial x}{\partial\theta}\\\frac{\partial y}{\partial\rho}&\frac{\partial y}{\partial\phi}&\frac{\partial y}{\partial\theta}\\\frac{\partial z}{\partial\rho}&\frac{\partial z}{\partial\phi}&\frac{\partial z}{\partial\theta}\end{array}$
$\frac{\partial x}{\partial\rho}=(\rho cos\phi sin\theta)'_{\rho}=cos\phi sin\theta,\ \frac{\partial x}{\partial\phi}=(\rho cos\phi sin\theta)'_{\phi}=\rho(-sin\phi)sin\theta=-\rho sin\phi sin\theta,\ \frac{\partial x}{\partial\theta}=(\rho cos\phi sin\theta)'_{\theta}=\rho cos\phi cos\theta$
$\frac{\partial y}{\partial\rho}=(\rho sin\phi sin\theta)'_{\rho}=sin\phi sin\theta,\ \frac{\partial y}{\partial\phi}=(\rho sin\phi sin\theta)'_{\phi}=\rho cos\phi sin\theta,\ \frac{\partial y}{\partial\theta}=(\rho sin\phi sin\theta)'_{\theta}=\rho sin\phi cos\theta$
$\frac{\partial z}{\partial\rho}=(\rho cos\theta)'_{\rho}=cos\theta,\ \frac{\partial z}{\partial\phi}=(\rho cos\theta)'_{\phi}=0,\ \frac{\partial z}{\partial\theta}=(\rho cos\theta)'_{\theta}=-\rho sin\theta$
$\frac{D(x,y,z)}{D(\rho,\phi,\theta)}=\begin{array}{|ccc|}cos\phi sin\theta&-\rho sin\phi sin\theta&\rho cos\phi cos\theta\\sin\phi sin\theta&\rho cos\phi sin\theta&\rho sin\phi cos\theta\\cos\theta&0&-\rho sin\theta\end{array}$
Развиваме детерминантата на Якобиана по последния ред:
$\frac{D(x,y,z)}{D(\rho,\phi,\theta)}=cos\theta\begin{array}{|cc|}-\rho sin\phi sin\theta&\rho cos\phi cos\theta\\\rho cos\phi sin\theta&\rho sin\phi cos\theta\end{array}-\rho sin\theta\begin{array}{|cc|}cos\phi sin\theta&-\rho sin\phi sin\theta\\sin\phi sin\theta&\rho cos\phi sin\theta\end{array}$
$\frac{D(x,y,z)}{D(\rho,\phi,\theta)}=cos\theta(-\rho^2sin^2\phi sin\theta cos\theta-\rho^2cos^2\phi sin\theta cos\theta)-\rho sin\theta(\rho cos^2\phi sin^2\theta+\rho sin^2\phi sin^2\theta)$
$\frac{D(x,y,z)}{D(\rho,\phi,\theta)}=-\rho^2sin\theta cos^2\theta(sin^2\phi+cos^2\phi)-\rho^2sin^3\theta(sin^2\phi+cos^2\phi)=-\rho^2sin\theta(cos^2\theta+sin^2\theta)=-\rho^2sin\theta$
$\left|\frac{D(x,y,z)}{D(\rho,\phi,\theta)}\right|=|-\rho^2sin\theta|=\rho^2|sin\theta|$
$0\leq\theta\leq\pi\Rightarrow sin\theta\geq0\Rightarrow\left|\frac{D(x,y,z)}{D(\rho,\phi,\theta)}\right|=\rho^2sin\theta$
$\iiint_{x^2+y^2+z^2\leq4}(x+y+z)dxdydz=\int_0^2\int_0^{\pi}\int_0^{2\pi}(\rho cos\phi sin\theta+\rho sin\phi sin\theta+\rho cos\theta)\rho^2sin\theta d\phi d\theta d\rho=\int_0^2\rho^3d\rho\int_0^{\pi}\int_0^{2\pi}(cos\phi sin^2\theta+sin\phi sin^2\theta+cos\phi sin\theta)d\phi d\theta$
$\iiint_{x^2+y^2+z^2\leq4}(x+y+z)dxdydz=\frac{\rho^4}{4}|_0^2\cdot\int_0^{\pi}(sin^2\theta.(+sin\phi)|_0^{2\pi}+sin^2\theta.(-cos\phi)|_0^{2\pi}+sin\theta.(+sin\phi)|_0^{2\pi})d\theta=$
$=\frac{2^4}{4}\cdot\int_0^{\pi}(sin^2\theta.(0-0)+sin^2\theta.(-1-(-1))+sin\theta.(0-0))d\theta=0$