от ammornil » 17 Яну 2025, 00:42
$\lim_{x \to \infty }\left[x\cdot{}ln\left(1+\frac{1}{x}\right)\right]=? \\[6pt]$
$x\to{}+\infty \Rightarrow \dfrac{1}{x}\to{} 0 \Rightarrow ln\left(1+\frac{1}{x}\right)\to{}\dfrac{1}{x} \\[6pt]\lim_{x \to \infty }\left[x\cdot{}ln\left(1+\frac{1}{x}\right)\right]\to{}\lim_{x \to \infty }\left(x\cdot{}\frac{1}{x}\right)= 1$
$\\[12pt] \lim_{x \to \infty }\left[x\cdot{}ln\left(1+\frac{1}{x}\right)\right]=\lim_{x \to \infty }\dfrac{ln\left(1+\dfrac{1}{x}\right)}{\dfrac{1}{x}}\overset{\left[\frac{0}{0}\right]}{=} \lim_{x \to \infty }\dfrac{\left[ln\left(1+\dfrac{1}{x}\right)\right]'}{\left(\dfrac{1}{x}\right)'}= \lim_{x \to \infty }\dfrac{-\dfrac{1}{x^{2}+x}}{-\dfrac{1}{x^{2}}}=\lim_{x \to \infty }\dfrac{x^{2}}{x^{2}+x}= \lim_{x \to \infty }\dfrac{x^{2}}{x^{2}\left(1+\dfrac{1}{x}\right)}= \lim_{x \to \infty }\dfrac{1}{1+\dfrac{1}{x}}=\cdots =\dfrac{1}{1+0}= 1\\[12pt]$
$ \left[ln\left(1+\dfrac{1}{x}\right)\right]'=-\dfrac{1}{x^{2}}\cdot{}\dfrac{1}{1+\dfrac{1}{x}}=-\dfrac{1}{x^{2}}\cdot{}\dfrac{1}{\dfrac{x+1}{x}} =-\dfrac{x}{x^{2}(x+1)}=-\dfrac{1}{x(x+1)}=-\dfrac{1}{x^{2}+x} $
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]