от ammornil » 14 Фев 2026, 16:36
Ето още едно предложение за решение.$\\[12pt] \begin{array}{|l} (x-1)(y^{2}+6)= y(x^{2}+1) \\[6pt] (y-1)(x^{2}+6)= x(y^{2}+1) \end{array} \\[24pt] \begin{array}{|l} xy^{2} +6x -y^{2} -6= yx^{2} +y \\[6pt] yx^{2} +6y -x^{2} -6= xy^{2} +x \end{array} \quad \Leftrightarrow \quad \begin{array}{|l} xy^{2} +6x -y^{2} -6- yx^{2} -y= 0 \quad (1) \\[6pt] yx^{2} +6y -x^{2} -6 -xy^{2} -x=0 \quad (2) \end{array} \\[12pt] (1) +(2):\quad \cancel{xy^{2}} +6x -y^{2} -6 \cancel{-yx^{2}} -y \cancel{+ yx^{2}} +6y -x^{2} -6 \cancel{-xy^{2}} -x= 0 \quad \Leftrightarrow \quad \\[6pt] \hspace{5em} -(y^{2} -5y +x^{2} -5x +12)=0 \quad |\cdot{(-1)} \Leftrightarrow \quad \\[6pt] \hspace{5em} y^{2}-2\cdot{\dfrac{5}{2}}\cdot{y} +\left(\dfrac{5}{2}\right)^{2} -\left(\dfrac{5}{2}\right)^{2} +x^{2} -2\cdot{\dfrac{5}{2}}\cdot{x} +\left(\dfrac{5}{2}\right)^{2} -\left(\dfrac{5}{2}\right)^{2} +12=0 \quad \Leftrightarrow \quad \\[6pt] \hspace{5em} \left(x-\dfrac{5}{2}\right)^{2} +\left(y-\dfrac{5}{2}\right)^{2}= \dfrac{1}{2} \quad (A) \\[12pt] (1)-(2): \quad xy^{2} +6x -y^{2} \cancel{-6} -yx^{2} -y -yx^{2} -6y +x^{2} \cancel{+6} +xy^{2} +x= 0 \quad \Leftrightarrow \quad \\[6pt] \hspace{5em} -xy(-y +x +x -y) +(x^{2}-y^{2}) +6(x-y) +(x-y)=0 \quad \Leftrightarrow \quad \\[6pt] \hspace{5em} -2xy(x-y)+(x-y)(x+y)+7(x-y)= 0 \quad \Leftrightarrow \quad \\[6pt] \hspace{5em} (x-y)(x +y -2xy +7)=0 \Rightarrow \text{ (Б1) } \quad x-y=0 \quad \cup \quad \text{ (Б2) } \quad x +y -2xy +7= 0 \\[12pt] \text{(случай 1):} \\[6pt] x=y \Rightarrow (A): \quad \left(y-\dfrac{5}{2}\right)^{2} +\left(y-\dfrac{5}{2}\right)^{2}= \dfrac{1}{2} \\[6pt] \hspace{7em} \left(y-\dfrac{5}{2}\right)^{2}= \dfrac{1}{4} \quad \Leftrightarrow \quad y^{2}-5y +\dfrac{25}{4} -\dfrac{1}{4}=0 \quad \Leftrightarrow \quad y^{2} -5y +6= 0 \\[6pt] \hspace{7em} y_{1,2}= \dfrac{5\pm\sqrt{25 -4\cdot{1}\cdot{6}}}{2\cdot{1}}= \dfrac{5\pm{1}}{2} \Rightarrow x_{1}=y_{1}=2, \quad x_{2}=y_{2}=3 \\[12pt] \text{(случай 2):} \\[6pt] x +y -2xy +7= 0 \quad \Leftrightarrow \quad -2\left(xy -\dfrac{1}{2}x +\dfrac{1}{4} -\dfrac{1}{2}y \right) +\dfrac{1}{2} +7=0 \quad \Leftrightarrow \quad \\[6pt] \hspace{7em} -2\left[x\left(y- \dfrac{1}{2}\right)-\dfrac{1}{2}\left(y -\dfrac{1}{2} \right)\right] +\dfrac{15}{2}= 0 \quad |\div{(-2)} \quad \Leftrightarrow \quad \\[6pt] \hspace{7em} \left(x -\dfrac{1}{2} \right)\cdot{}\left(y -\dfrac{1}{2} \right)= \dfrac{15}{4} \\[12pt] (A): \quad \left(x-\dfrac{5}{2}\right)^{2} +\left(y-\dfrac{5}{2}\right)^{2}= \dfrac{1}{2} \\[6pt] \text{ (Б2) } \quad \left(x -\dfrac{1}{2} \right)\cdot{}\left(y -\dfrac{1}{2} \right)= \dfrac{15}{4} \\[6pt] \quad u=x-\dfrac{5}{2}, \quad v= y-\dfrac{5}{2}, \quad -\dfrac{1}{2}= -\dfrac{5}{2} +2 \\[12pt] \begin{array}{|l} u^{2} +v^{2}= \dfrac{1}{2} \\[6pt] (u+2)(v+2) =\dfrac{15}{4} \end{array} \Leftrightarrow \begin{array}{|l} u^{2} +v^{2}= \dfrac{1}{2} \\[6pt] uv +2u +2v +4 -\dfrac{15}{4}= 0 \quad |\cdot{2} \end{array} \Leftrightarrow \begin{array}{|l} u^{2} +v^{2}= \dfrac{1}{2} \\[6pt] 2uv +4(u +v) = -\dfrac{1}{2} \end{array} \\[6pt] \Leftrightarrow \begin{array}{|l} u^{2} +2uv +v^{2} +4(u +v)= 0 \\[6pt] u^{2} -2uv +v^{2} -4(u +v) = 1 \end{array} \Leftrightarrow \begin{array}{|l} (u+v)^{2} +4(u +v)= 0 \\[6pt] (u-v)^{2} -4(u +v) = 1 \end{array} \Rightarrow \\[6pt] \begin{array}{|l} u+v= 0 \\[6pt] (u-v)^{2} -4(u +v) = 1 \end{array} \quad \cup \quad \begin{array}{|l} u +v =-4 \\[6pt] (u-v)^{2} -4(u +v) = 1 \end{array} \\[6pt] \begin{array}{|l} u= -v \\[6pt] 4v^{2} = 1 \end{array} \quad \cup \quad \begin{array}{|l} u= v -4 \\[6pt] 4^{2} +16 = 1 \end{array} \\[6pt] \begin{array}{|l} u= -v \\[6pt] v_{1,2}= \pm{\dfrac{1}{4}} \end{array} \quad \cup \quad \oslash \\[12pt] u_{1}= \dfrac{1}{2}, v_{1}= - \dfrac{1}{2} \Rightarrow x_{1}= 3, y_{1}= 2 \\[6pt] u_{2}= -\dfrac{1}{2}, v_{2}= \dfrac{1}{2} \Rightarrow x_{2}= 2, y_{2}= 3 \\[24pt]$ $$ \text{Отг.}\quad (2,2), \quad (3,3), \quad (2,3) \quad (3,2)$$
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]