от math10.com » 26 Ное 2013, 14:08
[tex]1-\frac{1}{1-x^2}<\frac{2}{x+1}[/tex]
[tex]\frac{(x+1)(x-1)}{x^2-1}+\frac{1}{x^2-1}-\frac{2(x-1)}{x^2-1}<0[/tex]
[tex]\frac{x^2-1+1-2x+2}{(x-1)(x+1)}<0[/tex]
[tex]\frac{x^2-2x+2}{(x-1)(x+1)}<0[/tex]
[tex]x^2-2x+2=(x-1)^2+1\ge 1[/tex] , за всяко [tex]x[/tex]
[tex]\frac{x^2-2x+2}{(x-1)(x+1)}<0 <=> (x-1)(x+1)<0[/tex]
следователно [tex]x\in (-1;1)[/tex]