от ammornil » 20 Фев 2024, 18:19
[tex]\begin{array}{llll}\log_{0,3}{(x^{2}-x)}>\log_{0,3}{(3x-2)}-\log_{0,3}{2} &&\text{ДМ: } & \begin{array}{|l} x(x-1)>0 \\ 3x-2>0 \end{array} \\ &&&\hspace{0.2em} \begin{array}{|l} x\in (-\infty;0) \cup (1;+\infty)\\ x \in \left(\frac{2}{3};+\infty\right) \end{array} \\ &&& x \in (1;+\infty) \\ \log_{0,3}{(x^{2}-x)}\boxed{ > } \log_{0,3}{\frac{3x-2}{2}} \\ \because 0,3<1 \Rightarrow x^{2}-x\boxed{ < }\frac{3x-2}{2} \\ 2x^{2}-2x-3x+2<0 \\ 2x^{2}-5x-2<0 &&& x_{1,2}=\frac{5\pm\sqrt{5^{2}-4\cdot{}2\cdot{2}}}{2\cdot{2}}=\frac{5\pm3}{4} \\ \left(x- \frac{1}{2}\right)(x-2)<0 \cap \text{ДМ: } x \in (1;+\infty) \\ x \in \left(\frac{1}{2};2\right) \cap x \in (1;+\infty) \\ x \in (1;2) \end{array}[/tex]
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]