tg[tex]\alpha[/tex]+tg[tex]\beta[/tex]+tg[tex]\gamma[/tex]= tg[tex]\alpha[/tex]+tg[tex]\beta[/tex]+tg[ 180[tex]^\circ[/tex]-([tex]\alpha + \beta[/tex]) ] =
=tg[tex]\alpha[/tex]+tg[tex]\beta[/tex] -tg([tex]\alpha+ \beta[/tex])=
Ползваме формулата tg[tex]\alpha[/tex]+tg[tex]\beta[/tex]=[tex]\frac{sin( \alpha+ \beta) }{cos \alpha .cos \beta }[/tex]
=[tex]\frac{sin( \alpha+ \beta )}{cos \alpha.cos \beta }[/tex] - [tex]\frac{tg \alpha +tg \beta }{1-tg \alpha .tg \beta }[/tex] = (Означаваме лявата дроб с -А)
=А-[tex]\frac{ \frac{sin \alpha }{cos \alpha } + \frac{sin \beta }{cos \beta } }{ \frac{1}{1} - \frac{sin \alpha.sin \beta }{cos \alpha .cos \beta } }[/tex] = A - [tex]\frac{(sin \alpha.cos \beta +sin \beta.cos \alpha)cos \alpha cos \beta }{(cos \alpha .cos \beta -sin \alpha.sin \beta)cos \alpha cos \beta }[/tex] =
=[tex]\frac{sin( \alpha+ \beta )}{cos \alpha.cos \beta }[/tex] - [tex]\frac{sin( \alpha+ \beta) }{cos( \alpha + \beta) }[/tex]=
[tex]\frac{sin( \alpha+ \beta).cos( \alpha+ \beta) -sin( \alpha+ \beta)cos \alpha.cos \beta }{cos \alpha.cos \beta.cos( \alpha + \beta )}[/tex] =
=[tex]\frac{sin( \alpha + \beta )[cos \alpha.cos \beta -cos( \alpha + \beta ) ]}{cos \alpha .cos \beta[ -cos( \alpha+ \beta ) ]}[/tex] =
=[tex]\frac{sin( \alpha+ \beta)[cos \alpha.cos \beta- cos \alpha.cos \beta +sin \alpha.sin \beta ]}{cos \alpha cos \beta[ -cos( \alpha+ \beta) ]}[/tex] =
=[tex]\frac{sin \alpha.sin \beta.sin( \alpha+ \beta) }{cos \alpha.cos \beta[ -cos( \alpha+ \beta) ] }[/tex]=
=[tex]\frac{sin \alpha.sin \beta.sin[ 180 ^\circ-( \alpha+ \beta) ] }{cos \alpha .cos \beta.cos[ 180 ^\circ-( \alpha+ \beta) ] }[/tex]=
=[tex]\frac{sin \alpha.sin \beta.sin \gamma }{cos \alpha.cos \beta.cos \gamma }[/tex] =[tex]\frac{sin \alpha }{cos \alpha }[/tex] .[tex]\frac{sin \beta }{cos \beta }[/tex] .[tex]\frac{sin \gamma }{cos \gamma }[/tex] =
=tg[tex]\alpha[/tex]tg[tex]\beta[/tex]tg[tex]\gamma[/tex]