Гост написа:Можете ли да ми помогнете с тази граница:
[tex]\lim_{x \to 1}(x-1)^{ln(x)}[/tex]
Дефинираме $f(x) = (x-1)^{lnx}$, тогава
$\lim_{x\to 1}f(x) = \lim_{x\to 1}(x-1)^{lnx} = \lim_{x\to 1} e^{ln(x).ln(x-1)} = e^{\lim_{x\to 1}ln(x).ln(x-1)} = e^L$
$\Rightarrow L = \lim_{x\to 1}ln(x).ln(x-1) = \lim_{x\to 1}\frac{ln(x-1)}{\frac{1}{lnx}} = \{\frac{-\infty}{\infty}\}$
$\overset{L'Hospital}\Rightarrow L = \lim_{x\to 1}\frac{\frac{1}{x-1}}{-\frac{1}{xln^2x}} = \lim_{x\to 1}-\frac{xln^2x}{x-1} = \{\frac{0}{0}\}$
$\overset{L'Hospital}\Rightarrow L = \lim_{x\to 1}-(ln^2x + \cancel{x}.2lnx.\cancel{\frac{1}{x}}) = \lim_{x\to 1}-lnx(lnx + 2) = -0\times 2 = 0$
$\Rightarrow\boxed{\lim_{x\to 1}f(x) = e^0 = 1}$