Регистрация не е нужна, освен при създаване на тема в "Задача на седмицата".

Отсечка в трапец

Отсечка в трапец

Мнениеот Гост » 12 Май 2025, 19:13

Даден е трапец ABCD с основи AB = a и DC = b , a>b . Да се определи дължината на отсечка от права успоредна на основите на трапеца ,която е заключена между бедрата му,такава,че да разделя лицето на ABCD на две равни части.
Гост
 

Re: Отсечка в трапец

Мнениеот ammornil » 13 Май 2025, 01:08

Screenshot 2025-05-12 232033.png
Screenshot 2025-05-12 232033.png (12.11 KiB) Прегледано 85 пъти
$D_{1}D_{2}+ DD_{2}= h_{\text{тр.}}, \quad EF= x, DD_{2}=y , DD_{1}=h\\[12pt] \dfrac{1}{2}S_{ABCD}= \dfrac{1}{2}\cdot{\dfrac{a+b}{2}}\cdot{h}=\dfrac{a+b}{4}\cdot{h} \\[12pt] \underbrace{\dfrac{a+b}{4}\cdot{h}}_{\dfrac{1}{2}S_{ABCD}}= \underbrace{\dfrac{b+x}{2}\cdot{y}}_{S_{FECD}} \Leftrightarrow (a+b)h=2(b+x)y \Leftrightarrow y=\dfrac{a+b}{2(b+x)}h \\[12pt] D_{1}D_{2}= h-y =\left(1-\dfrac{a+b}{2(b+x)} \right)h= \dfrac{2x+b-a}{2(b+x)}h \\[12pt] \underbrace{\dfrac{a+x}{2}\cdot{\dfrac{2x+b-a}{2(b+x)}}\cdot{h}}_{S_{ABEF}}= \underbrace{\dfrac{a+b}{4}\cdot{h}}_{\dfrac{1}{2}S_{ABCD}} \quad|\div{\dfrac{h}{4}}\ne{0} \\[6pt] (a+x)(2x+b-a)=(b+x)(a+b) \\[6pt] \cancel{2ax} \cancel{+ab} -a^{2} +2x^{2} \cancel{+bx} \cancel{-ax}= \cancel{ab} +b^{2} \cancel{+ax} \cancel{+bx} \\[6pt] 2x^{2} =a^{2} +b^{2} \\[6pt]x=\sqrt{\dfrac{a^{2}+b^{2}}{2}}$
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]
Аватар
ammornil
Математик
 
Мнения: 3649
Регистриран на: 25 Май 2010, 19:28
Местоположение: Великобритания
Рейтинг: 1694


Назад към 9 клас



Кой е на линия

Регистрирани потребители: Google Adsense [Bot], Google [Bot]

Форум за математика(архив)