Регистрация не е нужна, освен при създаване на тема в "Задача на седмицата".

Куб

Куб

Мнениеот pepi23 » 18 Юни 2024, 16:20

Screenshot_20240618_171535_Chrome.jpg
Screenshot_20240618_171535_Chrome.jpg (34.16 KiB) Прегледано 283 пъти

Защо MN[tex]\bot[/tex] (AC1A1) това ве мога да разбера защо?
И ако може да ми помогнете как да я реша ?
pepi23
Нов
 
Мнения: 19
Регистриран на: 17 Юни 2024, 13:14
Рейтинг: 0

Re: Куб

Мнениеот Гост » 18 Юни 2024, 21:45

pepi23 написа:
Screenshot_20240618_171535_Chrome.jpg

Защо MN[tex]\bot[/tex] (AC1A1) това ве мога да разбера защо?
И ако може да ми помогнете как да я реша ?

А ти от къде знаеш,че [tex]MN \bot A C_{1 } A_{1 }[/tex]?В условието не пише такова нещо!
Гост
 

Re: Куб

Мнениеот pepi23 » 18 Юни 2024, 21:57

Screenshot_20240618_190939_Gallery.jpg
Screenshot_20240618_190939_Gallery.jpg (238.04 KiB) Прегледано 240 пъти

Аз всъщност имам и решението
Не разбирам защо MN[tex]\bot[/tex] (AC1A1)
Защо ??
И защо B1D1 [tex]\bot[/tex] (AC1A1)
Защо ??
Последна промяна pepi23 на 18 Юни 2024, 22:07, променена общо 1 път
pepi23
Нов
 
Мнения: 19
Регистриран на: 17 Юни 2024, 13:14
Рейтинг: 0

Re: Куб

Мнениеот Гост » 18 Юни 2024, 22:06

Ами питай онзи,който ти е дал решението!
Гост
 

Re: Куб

Мнениеот pepi23 » 18 Юни 2024, 22:08

Аз само питам някой да ми обясни
pepi23
Нов
 
Мнения: 19
Регистриран на: 17 Юни 2024, 13:14
Рейтинг: 0

Re: Куб

Мнениеот ptj » 06 Юли 2024, 08:15

Бързия отговор е : Заради симетриите, при които пирамидата се изобразява в себе си. ;)
Предполагам, че ти е трудно да ги видиш веднага затова ще ти дам друга идея:
Когато се търси перпендикулярност на прави в тригометрични задачи в 90% от стандартните решения се използва "Теорема за трите перпендикуляра":

Затова [tex]AC_1 \bot MN \Leftrightarrow AC \bot BD[/tex]. (проектираме [tex](AMNC_1)[/tex] в [tex](ABCD)[/tex].


[tex](B_1D_1 \bot A_1C_1) \cap (B_1D_1 \bot AC_1) \Rightarrow BD_1 \bot (AC_1A_1)[/tex]
ptj
Математик
 
Мнения: 3303
Регистриран на: 26 Юли 2010, 19:17
Рейтинг: 1109

Re: Куб

Мнениеот ptj » 06 Юли 2024, 10:05

Нещо не ми харесва обосновката на решението, макар че според мен резултата е верен.

Един нетрадиционен начин за намиране дължината на ос- отсечката е неговото трансформиране в разстяние между успоредни равнини:

Нека [tex]\vec {NC_1}=\vec {B_1K}[/tex]. В случая това ще са равнините [tex]MNC_1[/tex] и [tex]D_1B_1K[/tex].
Колкото до дължината на самата ос отсечка - тя може (освен чрез стандартните планиметрични методи) да се намери и чрез обема на призмата [tex]MNC_1D_1B_1K[/tex]( ос-отсечката се явява височина - разстояние между двете основи). Той е сума от обемите на две лесни за изчисление пирамиди (четириъгълната [tex]MNB_1D_1C_1[/tex] и триъгълната [tex]D_1B_1C_1K[/tex]), a а основата на призмата е половината от лицето на сечението [tex]ANC_1M[/tex].

Всъщност именно горната идея ме убеди, че дължината на търсената ос-отсечка е същата като дължината на [tex]О_1H[/tex]. :roll:

П.П. Ако вече са ви обяснили защо разстоянието между две кръстосани прави може да трансформира в разстояние между права и равнина, чрез успоредно пренасяне на първата права през точка от втората, то всичко в цитираното решение е достатъчно добре обосновано доказателство.
ptj
Математик
 
Мнения: 3303
Регистриран на: 26 Юли 2010, 19:17
Рейтинг: 1109

Re: Куб

Мнениеот ptj » 06 Юли 2024, 18:44

[tex]d= \sqrt{6}[/tex]
ptj
Математик
 
Мнения: 3303
Регистриран на: 26 Юли 2010, 19:17
Рейтинг: 1109

Re: Куб

Мнениеот ptj » 07 Юли 2024, 06:52

Нека дължината на всеки от ръбовете на куба е [tex]a[/tex].

[tex]\angle {AC_1A_1}=45 ^\circ[/tex], защото [tex]AC_1[/tex] e диагонал в квадрата [tex]ACC_1A_1[/tex].

[tex]OC_1=\frac{ \sqrt{2} }{2}a[/tex]

[tex]\triangle C_1OH[/tex] e равнобедрен и правоъгълен

От последните два реда [tex]\Rightarrow O_1H= \frac{O_1C_1}{ \sqrt{2} }= \frac{a}{2}[/tex].

-----------------------------------------------
Ако искаме да намерим ос-отсечката между [tex]B_1D_1[/tex] и [tex]CN[/tex] e достатъчно в равнобедрения [tex]\triangle NC_1M[/tex] да построим права [tex]s[/tex],

минаваща през точка [tex]H[/tex],която да е успоредна на основата [tex]NM[/tex].

Можем да твърдим, че ортогоналната проекция на [tex]B_1D_1[/tex] в равнината [tex](ANC_1M)[/tex] лежи върху построената права [tex]s[/tex].

Нека [tex]NC_1 \cap s =\{т.L\}[/tex].

Нека [tex]p[/tex] е права ортогонална на [tex](ANC_1M)[/tex], съдържаща точка [tex]L[/tex].

Има само една равнина, съдържаща правата [tex]B_1D_1[/tex], която да е ортогонална на равнината [tex](ANC_1M)[/tex]. Тя съдържа правите [tex]s[/tex] и [tex]p[/tex].

[tex]B_1D_1 \cap p=\{т.K\}[/tex].

Можем да твърдим, че [tex]O_1HLK[/tex] е правоъгълник, а [tex]LK[/tex] e ос-отсечка на [tex]B_1D_1[/tex] и [tex]NC_1[/tex].

--------------------------------------------
П.П. Задачата може да се реши и с АГ или с въвеждане на ортонормирана координатна система и скаларно произведение на вектори.
ptj
Математик
 
Мнения: 3303
Регистриран на: 26 Юли 2010, 19:17
Рейтинг: 1109


Назад към Стереометрия



Кой е на линия

Регистрирани потребители: Google [Bot]

Форум за математика(архив)