(а) [tex]\sqrt{2x^{2}-7x-49}\le x-1[/tex]
[tex]2x^{2}-7x-49 \rightarrow D=(-7)^{2}-4\cdot 2\cdot (-49)=441 \Rightarrow x_{1,2}=\frac{7\pm 21}{4} \rightarrow \begin{cases} x_{1}=-\frac{7}{2} \\ x_{2}=7 \end{cases}[/tex]
[tex]\text{ДМ: } \begin{array}{|l} 2x^{2}-7x-49 \ge 0 \\ x - 1 \ge 0 \end{array} \Leftrightarrow \begin{array}{|l} 2\left(x+\frac{7}{2}\right)(x-7) \ge0 \\ x \ge 1 \end{array} \Rightarrow x \in [7;+\infty)[/tex]
[tex]\sqrt{2x^{2}-7x-49}\le x-1 \> |(\dots)^{2} \hspace{2em} \Leftrightarrow 2x^{2}-7x-49 \le (x-1)^{2} \Leftrightarrow 2x^{2}-7x-49 \le x^{2}-2x+1 \Leftrightarrow x^{2}-5x-50 \le 0[/tex]
[tex]D=(-5)^{2}-4\cdot 1\cdot (-50)=225 \rightarrow x_{1,2}=\frac{5\pm 25}{2} \Rightarrow (x+10)(x-15) \le 0 \Rightarrow x \in [-10;15][/tex]
[tex]\begin{array}{|l} \text{ДМ: } x \in [7;+\infty) \\ \text{Изчисление: } x \in [-10;15] \end{array} \Rightarrow x \in [7;15] \Rightarrow AB=BC=AC=15\>[cm][/tex]
(б)

- Screenshot 2023-03-15 133655.png (15.91 KiB) Прегледано 1014 пъти
[tex]\angle{CAB}=\angle{ABC}=\angle{BCA}=60 ^\circ[/tex]
[tex]MNPQ-\text{правоъгълник} \Rightarrow \begin{cases} \angle{QMN}=\angle{MNP}=90 ^\circ \\ MN=PQ \\ QM=PN \end{cases} \Rightarrow \triangle{AMQ} \cong \triangle{BNP} \Rightarrow AM=NB[/tex]
Нека [tex]MN=x[/tex].
[tex]AM+NB+MN=AB \Rightarrow AM+AM+x=10 \Rightarrow AM=\frac{10-x}{2}[/tex]
[tex]\triangle{AMQ} \rightarrow \tg{\angle{QAM}}=\frac{QM}{AM} \Rightarrow QM=AM\cdot \tg{\angle{QAM}}=\frac{10-x}{2}\cdot \sqrt{3}[/tex]
[tex]f(x)=S_{MNPW}=MN\cdot QM=x\cdot \frac{10-x}{2}\cdot \sqrt{3}=\frac{\sqrt{3}}{2}x(10-x)=5\sqrt{3}x-\frac{\sqrt{3}}{2}x^{2}[/tex]
[tex]f'(x)=5\sqrt{3}-\sqrt{3}x=0 \Rightarrow x=5[/tex]
[tex]f''(x)=-\sqrt{3} < 0 \Rightarrow f(5)=f_{max} \Rightarrow S_{{MNPQ}_{max}} \rightarrow MN=PQ=5\>[cm], QM=PN=\frac{10-x}{2}\cdot \sqrt{3}=\frac{5\sqrt{3}}{2}\>[cm][/tex]
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]