от ammornil » 05 Мар 2023, 21:38
Според мен е нещо такова
[tex]ln(x)=u \Rightarrow x=e^{u}, \hspace{2em} d{u}=\frac{d{x}}{x} \Leftrightarrow dx=x\cdot du=e^{u}\cdot du[/tex]
[tex]e^{u}=1+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\frac{u^{4}}{4!}+\cdots \Rightarrow \frac{1}{u}\cdot e^{u} = \frac{1}{u} + 1+ \frac{u}{2!}+\frac{u^{2}}{3!}+\frac{u^{3}}{4!}+\cdots[/tex]
[tex]\int{\frac{1}{\ln{x}}\cdot dx }=\int{\frac{1}{u}\cdot e^{u}\cdot du }=\int{\left(\frac{1}{u} + 1+ \frac{u}{2!}+\frac{u^{2}}{3!}+\frac{u^{3}}{4!}+\cdots \right) \cdot du}=[/tex]
[tex]=\int{\frac{1}{u}\cdot du}+\int{1\cdot du}+\int{\frac{u}{2!}\cdot du}+\int{\frac{u^{2}}{3!}\cdot du}+\cdots= ... = ln(u)+u+\frac{u^{2}}{2\cdot 2!}+\frac{u^{3}}{3\cdot 3!}+\frac{u^{4}}{4\cdot 4!}+\cdots +C=[/tex]
[tex]=ln(u)+ \sum_{x=1}^{n }\frac{u^{i}}{i\cdot i!}+C[/tex]
[tex]\Rightarrow \int{\frac{1}{\ln{x}}\cdot dx }=ln(ln(x))+ \sum_{x=1}^{n }\frac{(ln(x))^{i}}{i\cdot i!}+C[/tex]
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]