Регистрация не е нужна, освен при създаване на тема в "Задача на седмицата".

Решаване с метод на гаус

Решаване с метод на гаус

Мнениеот Гост » 16 Ное 2024, 12:04

Да се решат следните системи линейни уравнения с помощта на метода на Гаус:



а)
⎧⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎩
x1 − 2x2 + x3 + x4 − x5 = 0
2x1 + x2 − x3 − x4 + x5 = 0
x1 + 7x2 − 5x3 − 5x4 + 5x5 = 0
3x1 − x2 − 2x3 + x4 − x5 = 0
б)
⎧⎪⎪⎪⎪

⎪⎪⎪⎪⎩
3x1 + 2x2 − x3 − 2x4 = 1
5x1 + 2x2 − 3x3 + x4 = 3
2x1 − x2 − 2x3 − 2x4 = 4
Гост
 

Re: Решаване с метод на гаус

Мнениеот ammornil » 16 Ное 2024, 17:39

[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]
Аватар
ammornil
Математик
 
Мнения: 3685
Регистриран на: 25 Май 2010, 19:28
Местоположение: Великобритания
Рейтинг: 1722

Re: Решаване с метод на гаус

Мнениеот ammornil » 17 Ное 2024, 02:05

[tex]\begin{array}{|l} x_{1}-2x_{2}+x_{3}+x_{4}-x_{5}=0 \\[6pt] 2x_{1}+x_{2}-x_{3}-x_{4}+x_{5}=0 \\[6pt] x_{1}+7x_{2}-5x_{3}-5x_{4}+5x_{5}=0 \\[6pt] 3x_{1}-x_{2}-2x_{3}+x_{4}-x_{5}=0 \end{array} \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 2&1&-1&-1&1&0 \\[6pt] 1&7&-5&-5&5&0 \\[6pt] 3&-1&-2&1&-1&0 \end{array} \end{Vmatrix} \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 2&1&-1&-1&1&0 \\[6pt] 1&7&-5&-5&5&0 \\[6pt] 3&-1&-2&1&-1&0 \end{array} \end{Vmatrix} \begin{array}{rrr} \cdot{(-2)}&\cdot{(-1)}&\cdot{(-3)}\\[6pt] <+&|&| \\[6pt] &<+&| \\[6pt] &&<+ \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&5&-3&-3&3&0 \\[6pt] 0&9&-6&-6&6&0 \\[6pt] 0&5&-5&-2&2&0 \end{array} \end{Vmatrix} \begin{array}{rrr} &&& \\[6pt] &\cdot{(-1)} \\[6pt] &|& \\[6pt] &<+& \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&5&-3&-3&3&0 \\[6pt] 0&9&-6&-6&6&0 \\[6pt] 0&0&-2&1&-1&0 \end{array} \end{Vmatrix} \begin{array}{rrr} && \\[6pt] \div{(5)} \\[6pt] && \\[6pt] && \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&1&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&9&-6&-6&6&0 \\[6pt] 0&0&-2&1&-1&0 \end{array} \end{Vmatrix} \begin{array}{rrr} && \\[6pt] \cdot{(-9)} \\[6pt] <+& \\[6pt] && \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&1&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&0&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&0&-2&1&-1&0 \end{array} \end{Vmatrix} \begin{array}{rrr} && \\[6pt] && \\[6pt] \cdot{}\left(-\dfrac{5}{3}\right)& \\[6pt] && \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&1&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&0&1&1&-1&0 \\[6pt] 0&0&-2&1&-1&0 \end{array} \end{Vmatrix} \begin{array}{rrr} && \\[6pt] && \\[6pt] \cdot{}2& \\[6pt] <+& \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&1&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&0&1&1&-1&0 \\[6pt] 0&0&0&3&-3&0 \end{array} \end{Vmatrix} \begin{array}{rrr} && \\[6pt] && \\[6pt]& \\[6pt] \div{3}& \end{array} \sim \\[12pt] \begin{Vmatrix} \begin{array}{rrrrr|r} 1&-2&1&1&-1&0 \\[6pt] 0&1&-\dfrac{3}{5}&-\dfrac{3}{5}&\dfrac{3}{5}&0 \\[6pt] 0&0&1&1&-1&0 \\[6pt] 0&0&0&1&-1&0 \end{array} \end{Vmatrix}\\[12pt][/tex]

Системата е съвместима, но неопределена. Трябва да се състави параметрично решение. От последната матрица възстановяваме системата и я допълваме с параметричната стойност на [tex]x_{5}[/tex]:
[tex]\begin{array}{|rrrrrrr} x_{1}&-2x_{2}&+x_{3}&+x_{4}&-x_{5}&=&0 \\[6pt] &x_{2}&-\dfrac{3}{5}x_{3}&-\dfrac{3}{5}x_{4}&+\dfrac{3}{5}x_{5}&=&0 \\[6pt] &&x_{3}&+x_{4}&-x_{5}&=&0 \\[6pt] &&&x_{4}&-x_{5}&=&0 \\[6pt] &&&&x_{5}&=&p \end{array} \quad \Leftrightarrow \quad \begin{array}{|l} x_{1}=2x_{2}-x_{3}-x_{4}+x_{5} \\[6pt] x_{2}=\dfrac{3}{5}(x_{3}+x_{4}-x_{5}) \\[6pt] x_{3}=-x_{4}+x_{5} \\[6pt] x_{4}=x_{5}\\[6pt] x_{5}=p \end{array} \quad \Leftrightarrow \quad \begin{array}{|l} x_{1}=0 \\[6pt] x_{2}=0 \\[6pt] x_{3}=0 \\[6pt] x_{4}=p\\[6pt] x_{5}=p \end{array}[/tex]

Забележка: проверете изчисленията за изчислителни грешки и грешки при пренасянето, защото работих директно в LATEX.
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]
Аватар
ammornil
Математик
 
Мнения: 3685
Регистриран на: 25 Май 2010, 19:28
Местоположение: Великобритания
Рейтинг: 1722

Re: Решаване с метод на гаус

Мнениеот Гост » 18 Ное 2024, 10:09

Благодаря много!
Гост
 


Назад към Системи



Кой е на линия

Регистрирани потребители: Google [Bot]

Форум за математика(архив)