prodanov написа:20.
[tex]-|x-2|\le 0\\let\vspace{} t = 3^{-|x-2|} \le 1\\
t^2 - 4at + a = 0\\
D=4a(4a-1) \ge 0 \Leftrightarrow a \in (-\infty, 0] \cup [\frac14, +\infty);\vspace{} t_0=2a\\
f(1)\le0\vspace{} \cup\vspace{} \begin{tabular}{|l}t_0<1\\f(1)\ge0\end{tabular} \Leftrightarrow a \in (-\infty, 0] \cup [\frac14, +\infty)[/tex]
19.
[tex]D(x): x \in (-\infty, 0) \cup(5, +\infty);\\2x^2 - 4ax + 8x + 8 + 2a = x^2 - 2ax + a;\\
x^2-2ax + 8 + a=0\\
\begin{tabular}{|l}D>0\\f(0) \ge 0\\ f(5) < 0 \end{tabular}\vspace{} \cup \vspace{} \begin{tabular}{|l}D>0\\f(0)<0\\f(5)\ge0 \end{tabular} \vspace{}\cup\vspace{}\begin{tabular}{|l}D=0\\x_0<0\end{tabular} \vspace{}\cup\vspace{}\begin{tabular}{|l}D=0\\x_0>5 \end{tabular}[/tex]
Довърши задачата докрай!