$|x^{2}+2x+2|+|x^{2}-1|=a \\[12pt] x^{2}+2x+2= x^{2} +2\cdot{x}\cdot{1}+1^{2} +1= (x+1)^{2} +1 >0 \quad \forall{x}\in\mathbb{R} \Rightarrow \\ |x^{2}+2x+2|= x^{2}+2x+2 \\ x^{2}-1=0 \Rightarrow x_{1,2}=\pm{1} \\[6pt] \begin{array}{|l|l|l|l|l|l|l|l|} & -\infty && -1 && 1 && +\infty \\[6pt] x^{2}+2x+2&+&+&+&+&+&+&+ \\[6pt] x^{2}-1&+&+&0&-&0&+&+ \end{array}\\[12pt] (1) x\in{}(-\infty;-1) \cup (1;+\infty) \\[6pt] x^{2}+2x+1+x^{2}-1=a \\[6pt] 2x^{2}+2x-a=0, \quad x_{1}=x_{2} \Rightarrow D=0 \Rightarrow 1^{2}+2\cdot{a}=0 \Rightarrow a=-\dfrac{1}{2}\\[6pt] 2x^{2}+2x-\dfrac{1}{2}=0 \Leftrightarrow 4x^{2}+4x+1=0 \Rightarrow (2x+1)^{2}=0 \Rightarrow x_{1}=x_{2}=-\dfrac{1}{2} \notin{} (-\infty;-1) \cup (1;+\infty) \Rightarrow a=-\dfrac{1}{2} \text{ не е решение на проблема} \\[12pt] (2)x\in{}\{-1,1\} \\[6pt] x^{2}-1=0 \Rightarrow x^{2}+2x+2=a \Leftrightarrow x^{2}+2x+2-a =0 \\[6pt] x_{1}= x_{2} \Rightarrow D=0 \Rightarrow 1^{2}- 1\cdot{}(2-a)=0 \Rightarrow a= 1 \\[6pt] x^{2}+2x+1=0 \Leftrightarrow (x+1)^{2}=0 \quad x_{1}=x_{2}= -1 \in{}\{-1,1\} \\[6pt] \Rightarrow a=1 \red{ \text{ е решение на проблема} } \\[12pt] (3) x\in{}(-1;1) \\[6pt] x^{2}+2x+1-(x^{2}-1)=a \Leftrightarrow 2x+2-a=0 \\[6pt] \Leftrightarrow x=\dfrac{a-2}{2} \Rightarrow -1< \dfrac{a-2}{2} <1 \Leftrightarrow 0 < a < 4 \red{ \text{ е решение на проблема} }$