от Добромир Глухаров » 23 Сеп 2019, 13:39
$x^2-ax+2=0$
$D=a^2-8>0$
$x_{1,2}=\frac{a\pm\sqrt{a^2-8}}{2}\in[0;3]$
$\begin{array}{|l}a^2-8>0\\0\leq\frac{a-\sqrt{a^2-8}}{2}\leq3\\0\leq\frac{a+\sqrt{a^2-8}}{2}\leq3\end{array}\Leftrightarrow\begin{array}{|l}a\in(-\infty;-2\sqrt{2})\cup(2\sqrt{2};+\infty)\\a\geq\sqrt{a^2-8}\\a-\sqrt{a^2-8}\leq6\\a\geq-\sqrt{a^2-8}\\a+\sqrt{a^2-8}\leq6\end{array}\Leftrightarrow\begin{array}{|l}a\in(-\infty;-2\sqrt{2})\cup(2\sqrt{2};+\infty)\\a\geq2\sqrt{2}\\\sqrt{a^2-8}\geq a-6\\a\geq2\sqrt{2}\\\sqrt{a^2-8}\leq6-a\end{array}\Leftrightarrow\begin{array}{|l}a\in(2\sqrt{2};+\infty)\\a\in\mathbb{R}\\a^2-8\leq a^2-12a+36\end{array}\Leftrightarrow\begin{array}{|l}a\in(2\sqrt{2};+\infty)\\a\leq\frac{11}{3}\end{array}\Leftrightarrow a\in(2\sqrt{2};\frac{11}{3}]$