от ammornil » 03 Дек 2024, 02:34
$ (2)\\[6pt] \frac{x^{2}+x-8}{x}+\frac{3x}{x^{2}+x-8}=4\\[6pt]\quad\text{ДМ:}\quad \begin{array}{|l} x\ne{}0 \\ x^{2}+x-8\ne{}0 \end{array} \Rightarrow \begin{array}{|l} x\ne{}0 \\ \dfrac{-1\pm{}\sqrt{1^{2}-4\cdot{}1\cdot{}(-8)}}{2\cdot{}1}\ne{}0 \end{array} \Rightarrow \begin{array}{|l} x\ne{}0 \\ \dfrac{-1\pm{}5}{2}\ne{}0 \end{array} \\ \quad \quad \Rightarrow x\in{}(-\infty;-3)\cup{}(-3;0)\cup{}(0;2)\cup{}(2;+\infty) \\[6pt] \frac{x^{2}+x-8}{x}+3\cdot{}\frac{x}{x^{2}+x-8}=4 \\[6pt] \quad \frac{x^{2}+x-8}{x}=t \ne{}0\quad \forall{x}\in{}\text{ДМ} \Rightarrow \\[6pt] t+3\frac{1}{t}-4=0 \Leftrightarrow t^{2}+3-4t=0 \Leftrightarrow t^{2}-4t+3=0 \\[6pt] \quad t_{1,2}=\dfrac{2\pm{}\sqrt{2^{2}-1\cdot{}3}}{1}=2\pm{}1 \Rightarrow \\[6pt] \begin{array}{lcl} \dfrac{x^{2}+x-8}{x}=1 &\cup&\dfrac{x^{2}+x-8}{x}=3 \end{array} \\[6pt] \begin{array}{lcl} x^{2}+x-8=x &\cup& x^{2}+x-8 =3x \end{array} \\[6pt] \begin{array}{lcl}x^{2}=8 &\cup&x^{2}-2x-8=0 \end{array} \\[6pt] \begin{array}{lcl} x_{1,2}=\pm{}2\sqrt{2}&\cup{}&x_{3,4}=\dfrac{1\pm{}\sqrt{1^{2}-1\cdot{}(-8)}}{1} \end{array} \\[6pt]\begin{array}{lcl} x_{1,2}=\pm{}2\sqrt{2}&\cup{}&x_{3,4}=1\pm{}3 \end{array} \\[6pt] x_{1}=-2\sqrt{2} \in{}\text{ДМ} \\ x_{2}=2\sqrt{2}\in{}\text{ДМ} \\x_{3}=-2\in{}\text{ДМ}\\x_{4}=4\in{}\text{ДМ}$ $$ \text{Отг.:} \quad -2\sqrt{2};\quad 2;\quad 2\sqrt{2};\quad 4 $$
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]