Регистрация не е нужна, освен при създаване на тема в "Задача на седмицата".

Степенен ред

Теми без категория

Степенен ред

Мнениеот Гост » 16 Апр 2019, 11:33

Определете областта на сходимост на степенния ред [tex]\sum_{n=1}^{\infty}\frac{x^{4n}}{(n+1)(3^{n}+2}[/tex].
Гост
 

Re: Степенен ред

Мнениеот Добромир Глухаров » 16 Апр 2019, 13:58

$x\in(-\sqrt[4]{3};\sqrt[4]{3})$

Интересно е да се отбележи, че за $x=\pm\sqrt[4]{3}$ по Раабе-Дюамел се оказва разходящ.
Аватар
Добромир Глухаров
Математик
 
Мнения: 2080
Регистриран на: 11 Яну 2010, 13:23
Рейтинг: 2177

Re: Степенен ред

Мнениеот Гост » 17 Апр 2019, 06:39

Добромир Глухаров написа:<span><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mi>x</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mroot><mn>3</mn><mn>4</mn></mroot><mo separator="true">;</mo><mroot><mn>3</mn><mn>4</mn></mroot><mo>)</mo></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle x\in(-\sqrt[4]{3};\sqrt[4]{3})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.5782em; vertical-align: -0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.20609em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord sqrt"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.845534em;"><span class="" style="top: -3.02331em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size6 size1 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.956095em;"><span class="svg-align" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord" style="padding-left: 0.833em;"><span class="mord">3</span></span></span><span class="" style="top: -2.91609em;"><span class="pstrut" style="height: 3em;"></span><span class="hide-tail" style="min-width: 0.853em; height: 1.08em;"><svg width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
s-65,47,-65,47z M834 80H400000v40H845z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.083905em;"><span class=""></span></span></span></span></span><span class="mpunct">;</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord sqrt"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.845534em;"><span class="" style="top: -3.02331em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size6 size1 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.956095em;"><span class="svg-align" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord" style="padding-left: 0.833em;"><span class="mord">3</span></span></span><span class="" style="top: -2.91609em;"><span class="pstrut" style="height: 3em;"></span><span class="hide-tail" style="min-width: 0.853em; height: 1.08em;"><svg width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
s-65,47,-65,47z M834 80H400000v40H845z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.083905em;"><span class=""></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>

Интересно е да се отбележи, че за <span><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mi>x</mi><mo>=</mo><mo>±</mo><mroot><mn>3</mn><mn>4</mn></mroot></mstyle></mrow><annotation encoding="application/x-tex">\displaystyle x=\pm\sqrt[4]{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.04em; vertical-align: -0.083905em;"></span><span class="mord">±</span><span class="mord sqrt"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.845534em;"><span class="" style="top: -3.02331em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size6 size1 mtight"><span class="mord mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.956095em;"><span class="svg-align" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord" style="padding-left: 0.833em;"><span class="mord">3</span></span></span><span class="" style="top: -2.91609em;"><span class="pstrut" style="height: 3em;"></span><span class="hide-tail" style="min-width: 0.853em; height: 1.08em;"><svg width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,
-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,
-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,
35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,
-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467
s-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422
s-65,47,-65,47z M834 80H400000v40H845z"></path></svg></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.083905em;"><span class=""></span></span></span></span></span></span></span></span></span> по Раабе-Дюамел се оказва разходящ.

Може ли да кажеш как става, понеже ще имам задача от този тип на контролно?
Гост
 

Re: Степенен ред

Мнениеот Добромир Глухаров » 17 Апр 2019, 11:08

$u_n=\frac{x^{4n}}{(n+1)(3^n+2)}$

Сходимост по Коши:

$\sqrt[n]{u_n}=\frac{x^4}{\sqrt[n]{n+1}\sqrt[n]{3^n+2}}\to\frac{x^4}{3}<1\Rightarrow|x|<\sqrt[4]{3}$

За $x=\pm\sqrt[4]{3}\to u_n=\frac{3^n}{(n+1)(3^n+2)}$

По Раабе-Дюамел:

$n\left(1-\frac{u_{n+1}}{u_n}\right)=n\left(1-\frac{3(n+1)(3^n+2)}{(n+2)(3^{n+1}+2)}\right)=$

$=n\left(1-\frac{n.3^{n+1}+3^{n+1}+6n+6}{n.3^{n+1}+2.3^{n+1}+2n+4}\right)=$

$=n\cdot\frac{n.3^{n+1}+2.3^{n+1}+2n+4-n.3^{n+1}-3^{n+1}-6n-6}{n.3^{n+1}+2.3^{n+1}+2n+4}=$

$=\frac{n.3^{n+1}-4n^2-2n}{n.3^{n+1}+2.3^{n+1}+2n+4}<1$

$\Rightarrow$ за $x=\pm\sqrt[4]{3}$ е разходящ.
Аватар
Добромир Глухаров
Математик
 
Мнения: 2080
Регистриран на: 11 Яну 2010, 13:23
Рейтинг: 2177


Назад към Висша математика



Кой е на линия

Регистрирани потребители: Google [Bot]

Форум за математика(архив)