[tex]f(x)=x^{3}-x^{2}+2x+4[/tex]

- 230103_001.png (5.93 KiB) Прегледано 1436 пъти
[tex]f(x)=(x+1)(x^{2}-2x+4) \Rightarrow \text{ функцията има само един реален корен.}[/tex]
От формули на Виет можем да определим:
[tex]x_{1}+x_{2}+x_{3}=-\frac{-1}{1}=1, \hspace{3em} x_{1}x_{2}+x_{2}x_{3}+x_{1}x_{3}=\frac{2}{1}=2, \hspace{3em} x_{1}.x_{2}.x_{3}=-\frac{4}{1}=-4[/tex]
[tex]x_{1}+x_{2}+x_{3}=1 \Rightarrow \begin{cases} x_{1}+x_{2}=1-x_{3} \\ x_{2}+x_{3}=1-x_{1} \\ x_{1}+x_{3}=1-x_{2} \end{cases} \Rightarrow[/tex]
[tex]\Rightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=(1-x_{3})(1-x_{1})(1-x_{2}) \Leftrightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=(1-x_{1}-x_{3}-x_{1}x_{3})(1-x_{2}) \Leftrightarrow[/tex]
[tex]\Leftrightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=1-x_{2}-x_{1}+x_{1}x_{2}-x_{3}+x_{2}x_{3}+x_{1}x_{3}-x_{1}x_{2}x_{3} \Leftrightarrow[/tex]
[tex]\Leftrightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=1-\underbrace{(x_{1}+x_{2}+x_{3})}_{=1}+\underbrace{(x_{1}x_{2}+x_{2}x_{3}+x_{1}x_{3})}_{=2}-\underbrace{x_{1}x_{2}x_{3}}_{=-4} \Leftrightarrow[/tex]
[tex]\Leftrightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=1-1+2+4 \Leftrightarrow (x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})=6[/tex]
[tex](x_{1}+x_{2}+x_{3})^{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3(x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3}) \Rightarrow[/tex]
[tex]\Rightarrow x_{1}^{3}+x_{2}^{3}+x_{3}^{3} = (\underbrace{x_{1}+x_{2}+x_{3}}_{1})^{3}+3\underbrace{(x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})}_{=6} \Leftrightarrow[/tex]
[tex]\Leftrightarrow x_{1}^{3}+x_{2}^{3}+x_{3}^{3} = 1^{3}+3.(6) \Leftrightarrow x_{1}^{3}+x_{2}^{3}+x_{3}^{3} =19[/tex]
[tex]P(x)=\underbrace{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}}_{=19}-\underbrace{(x_{1}+x_{2})(x_{1}+x_{3})(x_{2}+x_{3})}_{=6} \Leftrightarrow[/tex]
[tex]\Leftrightarrow P(x)=19-6 \Leftrightarrow P(x)=13[/tex]
[tex]\color{lightseagreen}\text{''Който никога не е правил грешка, никога не е опитвал нещо ново.''} \\
\hspace{21em}\text{(Алберт Айнщайн)}[/tex]